
A canonical transformation of the Hamiltonians quadratic in coordinate and momentum

operators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 1457

(http://iopscience.iop.org/0305-4470/12/9/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 20:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 9, 1979. Printed in Great Britain 

A canonical transformation of the Hamiltonians quadratic in 
coordinate and momentum operators 

R Bogdanovicl’:i: and M S GopinathanQ 
j: International Centre for Theoretical Physics, Trieste, Italy 
S Chemistry Department, Indian Institute of Technology, Madras, India 

Received 12 December 1978 

Abstract. In this paper an algebraic (matrix) method is presented for canonically trans- 
forming the Hamiltonians quadratic in coordinate and momentum operators into the 
Hamiltonian of non-interacting harmonic oscillators. The method is illustrated by trans- 
forming the Hamiltonian of a harmonic oscillator in a constant magnetic field into the 
Hamiltonian of the two-dimensional, in general anisotropic, harmonic oscillator. The 
results are found to be in agreement with those obtained previously for the same Hamil- 
tonian using a different technique. 

1. Introduction 

After long neglect, interest in canonical transformations has recently been revived, 
following the fundamental work of Moshinsky and Quesne (1971). 

In a number of applications, canonical transformations have been used to relate 
certain Hamiltonians to the Hamiltonian of a harmonic oscillator; for example, the 
two-dimensional Coulomb Hamiltonian (Moshinsky er a1 1972), the Hamiltonian of an 
electron in a uniform magnetic field (Boon and Seligman 1973) and the time-dependent 
Hamiltonian quadratic in coordinate and momentum operators (Leach 1977, 1978). 

In this paper, we consider a general time-independent Hamiltonian quadratic in 
coordinate and momentum operators. In Q 2, a method is given for canonically 
transforming this quadratic Hamiltonian into the Hamiltonian of the independent 
harmonic oscillators. It is found that these harmonic oscillator Hamiltonians belong to 
three distinct types: (i) the attractive harmonic oscillator, (ii) the repulsive harmonic 
oscillator and (iii) the two-dimensional isotropic harmonic oscillator with a term 
proportional to the angular momentum of a particle moving in the plane. These three 
types of transformed Hamiltonian can possibly be related to the bound and unbound 
(scattered) states of the original Hamiltonian. The results of this section are equally 
applicable to classical and quantum systems. 

In 3: 3, the method is illustrated by canonically transforming the Hamiltonian of a 
harmonic oscillator in a constant magnetic field into the Hamiltonian of the two- 
dimensional (in general, anisotropic) harmonic oscillator. The same Hamiltonian has 
been studied by Dulock and McIntosh (1966) and their results are in agreement with 
those obtained in this paper by applying the general method. 
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1458 R Bogdanovic and M S Gopinathan 

The limits of the method's applicability, the possible meaning of the results and the 
outline for future developments are briefly mentioned in 3; 4. 

2. Method 

2.1. Notation and statement of the problem 

The 2n x 2n symplectic matrix is introduced as 

K = (  - I  0 ') 
where I is the n x n unit matrix and n is a positive integer. In addition to being 
symplectic the matrix K (2.1) is orthogonal: 

K R =  I (2.2) 

where the matrix k is the transpose of the matrix U and it is skew-symmetric 

K = - U .  (2.3) 

The system of n degrees of freedom is described by the set of n coordinates xl. . .xn, 
which are understood to be components of a vector x, and the set of n momenta p l .  . .pn, 
the components of the vector p .  These two vectors define a state of the system as a point 
in 2n-dimensional phase space. The linear canonical transformation changes the 
vectors x and p into the new ones: 

(;) = M(;) (2.4) 

preserving the commutational relations between coordinate and momentum operators 
(or the Poisson brackets in the classical case) 

[xu,  x p l =  0 ,  [xu, P P I  = idup and [ p a ,  pp1 = 0. (2.5) 

It can be shown (Moshinsky and Quesne 1971) that the transformation effected by 

MKM = K (2.6) 

Also, it follows from equation (2.6) that if the matrix M is canonical so is M-', and if two 
matrices MI and M2 are canonical, the product M1M2 is also a canonical matrix, i.e. the 
set of matrices satisfying equation (2.6) form a group-the symplectic group of order 
2 4  Sp(2n). 

The object of the study of this paper is the general Hamiltonian quadratic in 
coordinate and momentum operators 

the matrix M is canonical if 

where the indices are summed from 1 to n. The coefficients H:;, i = 1 . . . 4  are all real 
and can always be made symmetric by using the relation 

(2.8) 
1 xupp = S(XUPB +PBX,). 
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In the vector notation the Hamiltonian (2 .7 )  is 

= (f) H(pX) ( 2 . 9 )  

where the matrix H has elements H:;, i = 1 . . . 4 ;  a, /3 = 1 . . . n. 
The problem is now formulated as follows. For a given Hamiltonian and the 

Hamiltonian matrix H, find a matrix F which diagonalises the Hamiltonian matrix H 

6HF = DH ( 2 . 1 0 ~ )  

(where DH is a diagonal matrix) subject to the condition of canonicity 

FK6 = K. (2 .10b)  

The solution of the two matrix equations (2 .10a)  and (2 .10b)  for unknown matrices 
F and D is carried out in two steps as follows. First, in 5 2.2,  the canonical matrix P is 
found, which brings the Hamiltonian matrix H into pseudo-diagonal form 

PHP = HI = RD (2 .11 )  

where D is a diagonal matrix. Second, in B 2.3,  a canonical matrix T is found which 
diagonalises the pseudo-diagonal matrix H' and is independent of the elements of H' 

TH'T = DH (2 .12 )  

where DH is again a diagonal matrix. The solution to the problem is then the product of 
the matrices 

F = PT. (2 .13)  

2.2. Pseudodiagonalisation of the Hamiltonian matrix 

From the condition of canonicity for matrix P, 

PKP = K (2 .14)  

one can find the inverse of matrix P; 
P =RPK 

-1 

(2 .15)  

where the orthogonality of matrix K equation (2 .2 ) ,  has been used. Multiplying 

equation (2 .11 )  by matrix P from the left and using equation (2 .15 ) ,  one arrives at 
the equation 

HP = kPD. (2 .16 )  

The at present unspecified elements of the diagonal matrix D are denoted by A . . . Az,. 
The set of 2n x 2n equations contained in the matrix equation (2 .16)  for elements of 
matrix P separates into 2n equations for 2n columns of matrix P: 

-1 

- f o r p = l  . . .  n - 
for p = n + 1 . . . 2 n  (2 .17)  
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where v = 1 , , . 2n. The elements of the matrix K (equation (2.1)) can be written as 
follows: 

KWy = &-, v = n + 1 . . . 2 n ;  

and 

K g y  = -KV, v , w = 1  . . .  2n. 

The homogeneous system of equations (2.17) has non-trivial solutions only if 
A . . . A2, are roots of the pseudosecular equation 

(2.18) 

where d(. . ,) is a determinant of the enclosed matrix. The roots of equation (2.18) are 
symmetrically distributed around zero. Because a determinant does not change value 
upon transposition, it follows that 

(2.19) 

where the symmetry of matrix H and the skew-symmetry of matrix K have been used. 
Therefore, if A is a root of equation (2.181, - A  is also a root. 

The roots of equation (2.18) can be arranged in a sequence so that the pair of roots 
with opposite sign are n places apart: 

d( H - A R) = 0 

a(H-A R) = d(R-A K) =d(H+ Ak) = d[H - ( - A ) R ]  

A 1 , A z . .  . A,, - A i ,  - A 2 . .  . -A,,. (2.20) 

In addition, all the roots are assumed to be different from zero and different from each 
other (no degeneracy). 

The system of equations (2.17) can be written in a more compact form as a 
pseudo-eigenvalue problem for the columns of the matrix P: 

H(P,)  = A v K W w )  v =  1 . .  . 2 n  (2.21) 

where (Py) is a column vector with elements P1,. . . Pz,,,. 
The system of equations (2.17) and (2.21) always has non-trivial solutions, provided 

A l . .  . A2, are the roots of equation (2.18) and the set of 2n vectors is linearly 
independent (Marcus and Ming 1964, p 30). The matrix Pis formed by arranging the 2n 
vectors (PJ (U = 1 . . .2n)  side by side. It will be shown that the matrix P as determined 
from (2.21) is canonical. To accomplish this, one considers two equations (2.21) for two 
distinct roots A,  and A,: 

H(Pw)  = A,&P,) ( 2 . 2 2 ~ )  

and 

H(P,) = A,k(P,). (2.226) 
Equation ( 2 . 2 2 ~ )  is multiplied from the left by the transpose of the vector (p,) ,  which is 
a row vector, and similarly equation (2.226) is multiplied by (FV)  also from the left. 
Because matrix H is symmetric, the indices v and p can be interchanged in the product 
on the left without changing the sign; matrix K is skew-symmetric and, on interchanging 
indices Y and p, the sign on the right side changes. So the indices in one of the equations 
are interchanged and this equation is subtracted from the other; the result is 

(2.23) 

The second factor in equation (2.23) can be different from zero only if  (A, +A, )  is zero, 

(A, + A,)(pW)R(Pv) = 0. 
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and this is the case according to the arrangement of the roots (2.20) when Iv -kI = n. 
The product (P,)k(P,) in equation (2.23) is in fact the matrix elements ( p i p ) , ” ;  
consequently one can conclude that 

for 1 , ~  - V I  = n (2.24) 

where k, Y = 1 . . , 2 n .  The unspecified constants A,, must all be different from zero, 
otherwise the matrix PRP will be singular, implying linear dependence of columns of the 
matrix P, contrary to the theorem of linearly dependent solutions of (2.21). These 
unspecified constants A,, are determined so that 

PRP = R. (2.25) 

A,, ; 
0, otherwise. 

(MP),” = { 

It is a simple matter to show that matrix P satisfying equation (2.25) also satisfies 

PKP = K (2.26) 

To pseudo-diagonalise the Hamiltonian matrix one multiplies equation (2.16) by P 

PHP = RD. (2.27) 

Due to the arrangement of the roots (2.201, matrix D in equation (2.27) has the form 

and it will be omitted. 

from the left, and using equation (2.25) one finds 

D=(: -Di O )  

and 

O D  
KD=(D1 o’>’ 

(2.28) 

(2.29) 

where the elements of the diagonal matrix Dl are A . . . A,,. 

2.3. Diagonalisation of the Hamiltonian matrix 

In 5 2.2 it has been shown that the canonical matrix P as determined from equations 
(2.21) and (2.25) brings the Hamiltonian matrix H (2.9) into pseudo-diagonal form: 

O D  
PHP= H’ = (Dl 0’). (2.30) 

The matrix H is then transformed into the diagonal form by a canonical matrix T: 

T = ( 1 / 2 1 / 2 ) ( ~ ”  c d  :’) (2.31a) 

where D,, Db, D, and Dd and n x n diagonal matrices with elements: a l  . . . a,,, bl . . . b,,, 
c1 . . . c,, and d l  . . . d,, respectively. These elements are linked through the relations 

(2.31b) $(a,d, + b,c, = 0 

and 

( 2 . 3 1 ~ )  $( a,d, - b,c, ) = 1.  
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Alternatively, 

a,d, = 1 

and 
bucu = -1 a = 1 . .  . n. 

(2.31d) 

(2.31e) 

The relation (2.316) ensures that the transformation by the matrix T diagonalises the 
Hamiltonian matrix H’ (equation (2.30)): 

(2.32) 

where the diagonal matrices D2 and Ds have elements alclhl . . . ancnhn and 
b ld lh l  . . . b,d,h., respectively. The condition ( 2 . 3 1 ~ )  ensures that the matrix T is 
canonical. Therefore the Hamiltonian matrix H (2.9) is diagonalised by the canonical 
matrix F, 

F=PT (2.33) 

where matrix P is determined by following the procedure outlined by equations (2.17) 
or (2.21) and (2.25), and matrix T is given by (2.31a). 

The Hamiltonian matrix H‘2’ (equation (2.32)) can be further simplified to cor- 
respond to the sum of the Hamiltonians in the usual form p 2 + w 2 x 2  by a scale 
transformation of coordinates associated with the matrix H”’, say x ( ~ )  and p‘”:  

1/2 ( 2 )  a = l  . . .  n (2) x u  +(a,c,A,) x u  

or, to be consistent with the matrix notation, by transforming the Hamiltonian matrix 
H‘2’ by the matrix S into the form 

(2.34) 

where the elements of the diagonal matrix D, are - A ? .  . . - h i  and the relations 
(2.31d) and (2.31e) have been used. The diagonal matrix S has the elements 
(bldlhl)’/2.  . . (b,d,h,)1/2,  (b1dlAl)-’/2. . . (b,d,h,)-1’2. 

The summary of all these transformations is as follows. The original Hamiltonian 
(2.7) is a function of x and p .  The linear canonical transformation of the old coordinates 
x and momenta p into the new coordinates f and momenta p is effected by the matrix 
PTS: 

(;) = PTSQ (2.35) 

and the original Hamiltonian (2.7) is transformed into the form of n uncoupled 
harmonic oscillators: 

(2.36) 

This form corresponds to the Hamiltonian matrix (equation (2.34)). The individual 
Hamiltonians in equation (2.36) are classified according to the value of a root A@. 

For h p  purely imaginary, the Hamiltonian Ho is one of the attractive harmonic 
oscillators. This Hamiltonian is related to bound states of the spectrum of the original 
Hamiltonian. 
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For A, real, the Hamiltonian Gy is one of the repulsive harmonic oscillator. This is 
an unbounded Hamiltonian and is related to unbounded or scattered states of the 
original Hamiltonian. 

For As complex, the associated Hamiltonian f i s  and the Hamiltonian associated 
with the complex conjugate root A ;E: (if A is a root then A * is also a root) together can be 
canonically transformed into the real form. If the coordinates associated with the 
complex root As are PI and p1 and those associated with the complex conjugate root are 
X 2  and p2, then the replacement 

XI + (2AS)-1/2(fl + ip2) 

X;?+ (2A$)-1’2(X2+ip1) 

(2.37) 

brings the Hamiltonian 

into the form 

After further scale transformation, 

the Hamiltonian becomes 

(2.30) 2 - - p l  -2  +p:  -2  Im(As)L12-(ReAs)2(f: +Xi) 

where the angular momentum is LIZ = XI& -2zp1. 
The Hamiltonian (2.40) is one of a particle moving in the plane in the repulsive 

harmonic oscillator potential, so it is again related to the unbounded part of the 
spectrum of the original Hamiltonian (2.7). Nevertheless, the Hamiltonian (2.40) does 
not seem to be well known and its properties will require further investigation. 

The appearance of unbounded Hamiltonians in the transformed form (2.36) is a 
consequence of generality of the original Hamiltonian. If, for example, the original 
Hamiltonian is unbounded, i.e. in the repulsive oscillator form, it cannot be trans- 
formed, at least by this method, into the attractive oscillator Hamiltonian. A canonical 
transformation preserves equations of motion of the system and the motion obviously 
differs for attractive and repulsive harmonic oscillators. 

The procedure for diagonalising the Hamiltonian matrix is analogous to the 
preocedure for diagonalising symmetric matrices in ordinary space. If the symplectic 
matrix K is replaced by a unit matrix the two procedures will be identical. This is in 
agreement with the remark of McIntosh (1975) about the similarities of the two spaces. 
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3. An application 

As an illustration of the method, the Hamiltonian of a harmonic oscillator in a constant 
magnetic field is transformed into the Hamiltonian of the two-dimensional, in general, 
anisotropic oscillator. The same Hamiltonian has been studied by Dulock and McIn- 
tosh (1966) by using a special technique, and it is found that pertinent results of their 
work are identical to those obtained in this section. 

The Hamiltonian of a harmonic oscillator in a magnetic field is 

(3.1) 

where m and e are mass and charge of the particle, p and r are the two-dimensional 
momenta and position vector, c is the velocity of light in vacuum, w is the ‘natural’ 
frequency of the oscillator, and A is a vector potential of the magnetic field. 

The magnetic field is assumed to be constant and to point along the positive z axis. 
The symmetric gauge is chosen so that the vector potential has the components 

XM = ( 1 / 2 m ) [ p - ( e / ~ ) A ] ~ + t m w  2 2  r 

A : ( -:BOX?, ~ B O X I ,  0 )  

where Bo is the magnetic field strength. To simplify the notation, the following 
constants are introduced: 

a = ( e 2 B i / 8 m c 2 )  + ( m w 2 / 2 ) ,  

P = eBo/2mc 

and 

y = 1/2m. 

The symmetrised Hamiltonian in the sense of equation (2 .8)  is 

R M  = ab: + x : )  -(P/2)(x1P2-XzP*) -(P/2)(PzX1 - P I X * )  + Y ( P :  + p : ,  

and, accordingly, the Hamiltonian matrix is 

The first step is to solve the pseudosecular equation 

d(HM - A k) = 0.  

The four roots of equation (3 .4)  are symmetrically distributed around zero: 

* iu+ and kia- 

where 

U* = p / 2  f 

The second step is to find four columns of the matrix PM from 

H M P ,  ) = A, &Pa 

(3 .2a)  

(3 .26)  

( 3 . 2 ~ )  

(3 .3)  

(3 .4)  

( 3 . 5 )  

(3 .6)  

(3 .7)  
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by successively substituting the four roots (3.6). The matrix PM thus determined has the 
form 

p a w ,  a w 2  -aw3  a w 4  \ 
- i a w l  i a w 2  i a w 3  - iaw4 
- iwl  -iw2 iw3  iw4 1 

p M = \  w1 w2 w3 w4 

where a = (? /a)  and wl, w2, w3 and w4 are undetermined parameters linked through 
the relations 

4iw1w3 = -1 ( 3 . 9 ~ )  

and 

4iw2w4 = 1. (3.9b) 

The matrix P transforms the Hamiltonian matrix (3.4) into a pseudodiagonal form 
The relations (3.9) ensure the canonicity of the matrix P. 

/ 0 0 ia, 

(3.10) 

\ O  ia- o O /  

The third step is to transform the Hamiltonian matrix HE’ into a diagonal form by 
the matrix TM (the elements of the matrix T, D, = Db = - D, = Dd = I, are chosen in 
order to simplify notation): 

/ l  0 1 o \  

\ o  -1 0 11 

(3.11) 

(3.12) 

The fourth step is to effect a simple scale transformation of coordinates associated 
with the matrix HE’. This transformation is represented by the matrix S 

/(iu+)1’2 o 0 o \  
(3.13) 

\ o  0 

Finally, the Hamiltonian matrix is in the harmonic oscillator form, 

/ u t  0 0 o\ 
(3.14) 

\ o  0 0 I /  
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Therefore the coordinate transformation 

brings the Hamiltonian (3.3) into the form: 

2 M-p1+& - -2  +u’,x: + a h : .  

(3.15) 

(3.16) 

This is the Hamiltonian of the two-dimensional anisotropic oscillator, and the well 
known group-theoretical results can be applied immediately. The symmetry group of 
the Hamiltonian (3.16) is SU(2).  For the ratio of frequencies 

_-  a- p,/2 - ( a y ) 1 / 2  - 
a+ p / 2  + 

an irrational number, generators of SU(2) are transcendental functions o f f  and p. The 
‘simple’ constants of motion of the Hamiltonian are obviously the two operators 

c - - 2  1 - p l  +a+x1 2 - 2  ( 3 . 1 7 ~ )  

and 

c - - 2  2 - p 2 + a - x 2 .  2 -  (3.176) 

The same operators are constants of motion of the original Hamiltonian (3.3). When 
these operators are transformed back into the original coordinates x and p with the 
matrix 

(3.18) 

they are 

and 

(JZSa+a- ) - ’ (a -~ l -a .c - , )=  c , = p :  + p :  +6-2(x:  + x : )  (3.196) 

where the irrelevant proportionality constant has been eliminated. The first constant of 
motion is the angular momentum of the particle and the second constant is related to the 
total energy through the linear combination 

3Vh.j = yc2 - pc,. (3.20) 

In this way the relevant results of Dulock and McIntosh-the symmetry group is SU(2),  
the ratio of frequencies, constants of motion and the form of the Hamiltonian in terms 
of the constants of motion-have been reproduced by systematically applying the 
method of this paper. 

4. Concluding remarks 

The method developed in 3 2 for canonically transforming the general quadratic 
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Hamiltonian is applicable only in a ‘clean’ case, i.e. if none of the roots of (2.18) are zero 
and if there is no degeneracy among the roots. 

Also it may happen that some of the elements of the matrix P are complex. This 
means that the new coordinate and momentum operators are no longer Hermitian. This 
possibility has been considered by Wolf (1974a, b), Boyer and Wolf (1975) and 
Kramers et a1 (1975). Of course, non-Hermiticity of these operators does not affect 
symmetry considerations. 

In recent publications (Leach 1977,1978), a problem closely related to this has been 
considered. It has been shown that the quadratic Hamiltonians of the type (2.7) can be 
transformed into the form of attractive harmonic oscillators by a time-dependent 
canonical transformation. The actual determination of the canonical matrix requires 
solving 2n x 2n coupled differential equations of the first order. The Hamiltonian 
arrived at is one of the isotropic attractive harmonic oscillators, unlike the transformed 
Hamiltonian of this paper, which may contain repulsive harmonic oscillator terms. The 
canonical transformation of the general Hamiltonian (2.7) into the Hamiltonian of the 
uncoupled harmonic oscillators is not unique. One of the three factors of the trans- 
formation, the matrix T, depends upon 4n parameters with 2n relations between them, 
leaving 2n unspecified parameters. It can be shown that the set of all these 2n 
parameter-dependent canonical transformations, all of which transform the original 
Hamiltonian into the same form, constitute a 2n parameter group, actually the 
subgroup of the full symplectic group Sp(2n), and this group is the symmetry group of 
the transformed Hamiltonian as well as of the original one. 

Because a canonical transformation preserves the commutationai relations between 
coordinate and momentum operators, it preserves the symmetry and dynamical sym- 
metry of the original Hamiltonian as well as the Heisenberg equation of motion for the 
operators which are functions of coordinate and momentum operators. So the method 
can be used to study the group-theoretical structure of the quadratic Hamiltonians by 
transforming them into a well understood harmonic oscillator form, as has been done in 
5 3 with the Hamiltonian of the harmonic oscillator in a constant magnetic field. 

Analyses of the repulsive type of Hamiltonians which appear as terms of the 
transformed Hamiltonian (2.36), the group-theoretical analysis of the quadratic 
Hamiltonians in relation to their transformed form and relation of this method to one 
proposed by Leach (1977, 1978) are planned to be the subjects of future studies. 
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